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Abstract

Two-photon correlations are discussed within the formalism of Hanbury-Brown and Tuwiss interferometry and
Bose—Einstein correlations. The technique is presented as 2 universal tool to study the properties of any boson source
— light sources such as stars, Of photon and meson sources in the early phase of heavy-ion collisions. The formalism is
“developed starting from optics and quantum statistics and is finally adapted to the dynamics of heavy-ion collisions.
Emphasis is put on the experimentai methods derived to display the interference between photons from nuclear reactions.
The influence of one-dimensional projections and the detector response on the interpretation of the source properties are
discussed. The method is illustrated using experimental data, available only in the intermediate (several tens of A MeV)
energy domain. The observed interference signalis interpreted, guided by dynamical phase-space calculations, in terms of
source size and reaction dynamics. Itis found that photons are emitted as brief light flashes, the relative intensity of which
can be linked via model calculations to the incompressibility modulus of nuclear matter. At ultrarelativistic energies,
two-photon correlations are presented as 2 tool to observe the phase transition towards the quark-gluon plasma.
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denominator of the correlation function, of prime importance for the extraction of reliable source
parameters.

The results obtained with the photon spectrometer TAPS have unambiguously demonstrated
the existence of the interference between bremsstrahlung photons. The interpretation of the source
parameters extracted revealed a source distribution more complex than the expected overlap zone
between the colliding nuclei. The interferometry measurements confirm the conclusions of the
study, guided by dynamical phase-space calculations, of single-photon production. The nuclear
reaction generates, under certain conditions, a density oscillation of the di-nuclear system. During
each compression phase photons are emitted, most intensively during the first compression, further
emissions diminishing in intensity. A source distribution with two components, direct and thermal
bremsstrahlung-photons, separated in space-time provided a good description of the experimental
correlation functions, as well as of their dependence with several parameters of the reaction. This
interpretation allowed to extract the spatial source-extent and the relative intensity of both direct
and thermal photon emission. The latter being related to the strength of the recompression
provides a measure of the incompressibility modulus of infinite nuclear matter.

The photon-source distribution generated by dynamical phase-space calculations was used to
construct the correlation function assuming that both photons in the pair were emitted indepen-
dently. The results provided a satisfactory agreement with the data. However, the absence of the
modulation measured for one of the systems led to the study of the sensitivity of the correlation
function to the structure of the recompression phase. The best agreement with the data was
obtained for the expected scenario where the di-nuclear system fragments into PLF and TLF after
the initial compression. This study confirms the power of the technique to probe the collision
dynamics as well as the need of improved sets of data, which will be soon provided by new
experiments. :

Although this review focused on the issues encountered in heavy-ion collisions at intermediate
energies, the same arguments can be used to exploit the two-photon correlation technique in
heavy-ion collisions at ultrarelativistic energies. There too most energetic photons are produced in
the early phase of the nuclear reaction, only the energy of the photons being larger by about two
orders of magnitude. Photons again represent a unique probe because of their weak interaction
with the nuclear medium. If a deconfinement phase of quarks and gluons is formed, energetic
photons will be emitted in parton collisions. They will compete with photons emitted during the

hadronic phase at a later stage of the reaction, when the system expands. We face again the
presence of two photon sources which can be revealed in a unique way by studying the two-photon

correlation function. At such high energies the experimental difiiculties are also considerably

increased, mainly for the identification of direct photons of interest among the overwhelming
contribution of photons stemming from the decay of neutral mesons. This partly explains why no
data are available yet. But the effort put in this programme by the WA80/98 collaboration is fully
justified, as are the plans to continue these studies at RHIC and LHC.,

Two-photon correlations can be considered as a universal tool which originated in optics but
finds application in astronomy as well as in nuclear physics, at both intermediate and ultrarelativis-
tic cnergies. In heavy-ion physics this technique has no counterpart to access original information
on the early phase of the nuclear reaction, the most interesting phase in terms ol baryonic and

energy densities. At intermediate energies information on the EOS of nuclear matter has been

already extracted, and more is expected from future experiments. At ultrarelativistic energies
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Direct photons: A nonequilibrium signal of the expanding quark-gluon plasma at
RHIC energies

Shang-Yung Wang™ and Daniel Boyanovsky!
Deparlment of Physics and Astronomy. University of Pittsburgh, Pittsburgh. Pennsylvania 15260, USA

Kin-Wang Ng}
Institute of Physics, Acadenua Sinica, Taipei, Taiwan 115, ROC
(January 22, 2001)

Direct photon production from a longitudinally expanding quark-gluon plasma (QGP) at Rel-
ativistic Heavy lon Collider (RHIC) energies is studied with a real-time kinetic description that is
consistently incorporated with hydrodynamics. Within Bjorken’s hydrodynamical model, energy
nonconserving (anti)quark bremsstrahlung ¢(7) — ¢(§)7 and quark-antiquark annihilation g7 —
are shown to be the dominant nonequilibrium effects during the transient lifetime of the QGP.
For central Au+4Au collisions at RHIC energies /s ~ 2004 GeV, we find a significant excess of
direct photons in the range of transverse momentum pr 2 1.0 — 1.5 GeV/c as compared to equilib-
rium results. The transverse momentum distribution at midrapidity falls off with a power law p7”
with 2.5 < ~ £ 3.0 as a consequence of these off-shell processes, providing a distinct experimental
nonequilibrium signalure. The rapidity distribution is fairly flat in the interval |y| < 2. The power
law exponent 1 increases with the initial temperature of the QGP and therefore with the total
multiplicity rapidity distribution dNz/dy.

PACS numbers: 25.75.-¢, 12.38.Mh, 13.85.Qk, 11.10.\Wx

I. INTRODUCTION

The first observation of direct photon procduction in ultrarelativistic heavy ion collisions has been reported recently
by the CERN WA9S collaboration in °3Ph+4-2%3Pb collisions at /s = 1584 GeV at the Super Proton Synchrotron
(SPS) [1]. Most interestingly, a clear excess of direct photons above the background photons predicted from hadronic
cdecays is observed in the range of transverse momenturm pr > 1.5 GeV /e in central collisions. As compared to proton-
induced results at similar incident energy, the transverse momentum distribution of direct photons shows excess direct
photon production in central collisions beyond that expected from proton-induced reactions. These findings indicate
not only the experimental feasibility of using direct photons as a signature of the long-sought quark-gluon plasma
(QGP) [2] but also a deeper conceptual understanding of direct photon production in ultrarelativistic heavy ion
collisions.

Unlike many other new phases of matter created in the laboratory, the formation and evolution of the QGP in
ultrarelativistic heavy ion collisions is inherently a nonequilibrium phenomena [3,4].

Currently, it is theoretically accepted that parton-parton scatterings thermalize quarks and gluons on a time scale of
about 1 fm/ec after which the plasma undergoes hydrodynamic expansion and cools adiabatically down to the quark-
hacdron phase transition. If the transition is first order, quarks. gluons, and hadrons coexist in a mixed phase, which
alter hadronization evolves until freeze-out. Estimates based on energy deposited in the central collision region at
the BNL Relativistic Heavy Ton Collider (RHIC) energies /s ~ 2004 GeV suggest that the lifetime of the deconfined
QGP phase is of order 10 fm/c with an overall freeze-out time of order 100 fm/c. Different types of signatures are
proposed for each different phase.

Or all the potential signatures of a QGP [5], direct photons and dileptons emitted by the QGP, i.e., electromagnetic:
probes, are free of hadronic final state interactions and can provide a clean signature of the early stages of a thermalized
plasma of quarks and gluons. Therefore a substantial eflort has been devoted to a theoretical assessment of the spectra
of direct photons and dileptons emitted from the QGP [6-12].

: s ; e
*Email address: sywang@phyast.pitt.edu

«
Email address: boyvan@Gpitt.edu /95;5 /b § /'IT / -y

13 . a ..
*Email address: nkw@phys.sinica.edu.tw
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